from keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
from keras.datasets import cifar100
(x_train, y_train), (x_test, y_test) = cifar100.load_data(label_mode='fine')
from keras.datasets import imdb
(x_train, y_train), (x_test, y_test) = imdb.load_data(path = "imdb.npz",
num_words = None ,
skip_top = 0 ,
maxlen = None ,
seed = 113 ,
start_char = 1 ,
oov_char = 2 ,
index_from = 3 )
from keras.datasets import reuters
(x_train, y_train), (x_test, y_test) = reuters.load_data(path = "reuters.npz",
num_words = None ,
skip_top = 0 ,
maxlen = None ,
test_split = 0.2 ,
seed = 113 ,
start_char = 1 ,
oov_char = 2 ,
index_from = 3 )
word_index = reuters.get_word_index(path="reuters_word_index.json")
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
from keras.datasets import fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
from keras.datasets import boston_housing
(x_train, y_train), (x_test, y_test) = boston_housing.load_data()
Reference: https://keras.io/datasets/
Thursday, 15 August 2019
Keras Datasets
Subscribe to:
Posts (Atom)