Thursday, 15 August 2019

Keras Datasets


from keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()

from keras.datasets import cifar100
(x_train, y_train), (x_test, y_test) = cifar100.load_data(label_mode='fine')

from keras.datasets import imdb
(x_train, y_train), (x_test, y_test) = imdb.load_data(path       = "imdb.npz",
                                                      num_words  = None      ,
                                                      skip_top   = 0         ,
                                                      maxlen     = None      ,
                                                      seed       = 113       ,
                                                      start_char = 1         ,
                                                      oov_char   = 2         ,
                                                      index_from = 3         )

from keras.datasets import reuters
(x_train, y_train), (x_test, y_test) = reuters.load_data(path       = "reuters.npz",
                                                         num_words  = None         ,
                                                         skip_top   = 0            ,
                                                         maxlen     = None         ,
                                                         test_split = 0.2          ,
                                                         seed       = 113          ,
                                                         start_char = 1            ,
                                                         oov_char   = 2            ,
                                                         index_from = 3            )

word_index = reuters.get_word_index(path="reuters_word_index.json")


from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()


from keras.datasets import fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()



from keras.datasets import boston_housing
(x_train, y_train), (x_test, y_test) = boston_housing.load_data()


Reference: https://keras.io/datasets/

Thursday, 17 January 2019

Deep Learning Hello World Program


###############################################################################
## The DL (Deep Learning) Hello World Program
## References:
##   https://www.tensorflow.org/tutorials/
##   https://medium.com/the-andela-way/deep-learning-hello-world-e1fc53ea888
###############################################################################

import tensorflow as tf
from keras.datasets import mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(                                ),
  tf.keras.layers.Dense  (512 , activation = tf.nn.relu   ),
  tf.keras.layers.Dropout(0.2                             ),
  tf.keras.layers.Dense  (10  , activation = tf.nn.softmax)
])

model.compile(optimizer = 'adam'                           ,
              loss      = 'sparse_categorical_crossentropy',
              metrics   = ['accuracy']                     )

model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test, y_test)

###############################################################################
# Output
###############################################################################
# Using TensorFlow backend.
# Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz
# 11493376/11490434 [==============================] - 1s 0us/step
# Epoch 1/5
# 60000/60000 [==============================] - 14s 236us/step - loss: 0.2027 - acc: 0.9406
# Epoch 2/5
# 60000/60000 [==============================] - 14s 225us/step - loss: 0.0805 - acc: 0.9756
# Epoch 3/5
# 60000/60000 [==============================] - 13s 222us/step - loss: 0.0517 - acc: 0.9839
# Epoch 4/5
# 60000/60000 [==============================] - 14s 227us/step - loss: 0.0370 - acc: 0.9883
# Epoch 5/5
# 60000/60000 [==============================] - 13s 224us/step - loss: 0.0262 - acc: 0.9917
# 10000/10000 [==============================] - 1s 51us/step
# [0.07304962697861483, 0.9789]

Wednesday, 16 January 2019

TensorFlow Keras Models


compile(optimizer                ,
        loss               = None,
        metrics            = None,
        loss_weights       = None,
        sample_weight_mode = None,
        weighted_metrics   = None,
        target_tensors     = None)

fit(x                = None,
    y                = None,
    batch_size       = None,
    epochs           = 1   ,
    verbose          = 1   ,
    callbacks        = None,
    validation_split = 0.0 ,
    validation_data  = None,
    shuffle          = True,
    class_weight     = None,
    sample_weight    = None,
    initial_epoch    = 0   ,
    steps_per_epoch  = None,
    validation_steps = None)

evaluate(x             = None,
         y             = None,
         batch_size    = None,
         verbose       = 1   ,
         sample_weight = None,
         steps         = None)

predict(x,
        batch_size = None,
        verbose    = 0   ,
        steps      = None)

train_on_batch(x, y, sample_weight=None, class_weight=None)
test_on_batch (x, y, sample_weight=None)
predict_on_batch(x)

fit_generator(generator                  ,
              steps_per_epoch     = None ,
              epochs              = 1    ,
              verbose             = 1    ,
              callbacks           = None ,
              validation_data     = None ,
              validation_steps    = None ,
              class_weight        = None ,
              max_queue_size      = 10   ,
              workers             = 1    ,
              use_multiprocessing = False,
              shuffle             = True ,
              initial_epoch       = 0    )

evaluate_generator(generator                  ,
                   steps               = None ,
                   max_queue_size      = 10   ,
                   workers             = 1    ,
                   use_multiprocessing = False,
                   verbose             = 0    )

predict_generator(generator                  ,
                  steps               = None ,
                  max_queue_size      = 10   ,
                  workers             = 1    ,
                  use_multiprocessing = False,
                  verbose             = 0    )

get_layer(name=None, index=None)

Reference: keras.io

TensorFlow Keras Constraints


keras.constraints.MaxNorm(max_value=2, axis=0)
keras.constraints.NonNeg()
keras.constraints.UnitNorm(axis=0)
keras.constraints.MinMaxNorm(min_value=0.0, max_value=1.0, rate=1.0, axis=0)

Reference: keras.io

TensorFlow Keras Regulizers



keras.regularizers.l1   (0.)
keras.regularizers.l2   (0.)
keras.regularizers.l1_l2(l1 = 0.01, l2 = 0.01)

Reference: keras.io

TensorFlow Keras Initializers


keras.initializers.Initializer()
keras.initializers.Zeros()
keras.initializers.Ones()
keras.initializers.Constant(value=0)
keras.initializers.RandomNormal   (mean   =  0.0 , stddev = 0.05, seed = None)
keras.initializers.RandomUniform  (minval = -0.05, maxval = 0.05, seed = None)
keras.initializers.TruncatedNormal(mean   =  0.0 , stddev = 0.05, seed = None)

keras.initializers.VarianceScaling(scale        = 1.0     ,
                                   mode         = 'fan_in',
                                   distribution = 'normal',
                                   seed         = None    )

keras.initializers.Orthogonal(gain=1.0, seed=None)
keras.initializers.Identity  (gain=1.0)

keras.initializers.lecun_uniform (seed=None)
keras.initializers.glorot_normal (seed=None)
keras.initializers.glorot_uniform(seed=None)
keras.initializers.he_normal     (seed=None)
keras.initializers.lecun_normal  (seed=None)
keras.initializers.he_uniform    (seed=None)

Reference: keras.io

TensorFlow Keras Applications



keras.applications.xception.Xception(include_top  = True      ,
                                     weights      = 'imagenet',
                                     input_tensor = None      ,
                                     input_shape  = None      ,
                                     pooling      = None      ,
                                     classes      = 1000      )

keras.applications.vgg16.VGG16(include_top  = True      ,
                               weights      = 'imagenet',
                               input_tensor = None      ,
                               input_shape  = None      ,
                               pooling      = None      ,
                               classes      = 1000      )

keras.applications.vgg19.VGG19(include_top  = True      ,
                               weights      = 'imagenet',
                               input_tensor = None      ,
                               input_shape  = None      ,
                               pooling      = None      ,
                               classes      = 1000      )

keras.applications.resnet50.ResNet50(include_top  = True      ,
                                     weights      = 'imagenet',
                                     input_tensor = None      ,
                                     input_shape  = None      ,
                                     pooling      = None      ,
                                     classes      = 1000      )

keras.applications.inception_v3.InceptionV3(include_top  = True      ,
                                            weights      = 'imagenet',
                                            input_tensor = None      ,
                                            input_shape  = None      ,
                                            pooling      = None      ,
                                            classes      = 1000      )

keras.applications.inception_resnet_v2.InceptionResNetV2(include_top  = True      ,
                                                         weights      = 'imagenet',
                                                         input_tensor = None      ,
                                                         input_shape  = None      ,
                                                         pooling      = None      ,
                                                         classes      = 1000      )

keras.applications.mobilenet.MobileNet(input_shape      = None,
                                       alpha            = 1.0,
                                       depth_multiplier = 1,
                                       dropout          = 1e-3,
                                       include_top      = True,
                                       weights          = 'imagenet',
                                       input_tensor     = None,
                                       pooling          = None,
                                       classes          = 1000)

keras.applications.densenet.DenseNet121(include_top = True      ,
                                       weights      = 'imagenet',
                                       input_tensor = None      ,
                                       input_shape  = None      ,
                                       pooling      = None      ,
                                       classes      = 1000      )

keras.applications.densenet.DenseNet169(include_top  = True      ,
                                        weights      = 'imagenet',
                                        input_tensor = None      ,
                                        input_shape  = None      ,
                                        pooling      = None      ,
                                        classes      = 1000      )

keras.applications.densenet.DenseNet201(include_top  = True      ,
                                        weights      = 'imagenet',
                                        input_tensor = None      ,
                                        input_shape  = None      ,
                                        pooling      = None      ,
                                        classes      = 1000      )

keras.applications.nasnet.NASNetLarge(input_shape  = None      ,
                                      include_top  = True      ,
                                      weights      = 'imagenet',
                                      input_tensor = None      ,
                                      pooling      = None      ,
                                      classes      = 1000      )

keras.applications.nasnet.NASNetMobile(input_shape  = None      ,
                                       include_top  = True      ,
                                       weights      = 'imagenet',
                                       input_tensor = None      ,
                                       pooling      = None      ,
                                       classes      = 1000      )

keras.applications.mobilenet_v2.MobileNetV2(input_shape      = None      ,
                                            alpha            = 1.0       ,
                                            depth_multiplier = 1         ,
                                            include_top      = True      ,
                                            weights          = 'imagenet',
                                            input_tensor     = None      ,
                                            pooling          = None      ,
                                            classes          = 1000      )

Reference: keras.io