Wednesday, 16 January 2019

TensorFlow Keras Applications



keras.applications.xception.Xception(include_top  = True      ,
                                     weights      = 'imagenet',
                                     input_tensor = None      ,
                                     input_shape  = None      ,
                                     pooling      = None      ,
                                     classes      = 1000      )

keras.applications.vgg16.VGG16(include_top  = True      ,
                               weights      = 'imagenet',
                               input_tensor = None      ,
                               input_shape  = None      ,
                               pooling      = None      ,
                               classes      = 1000      )

keras.applications.vgg19.VGG19(include_top  = True      ,
                               weights      = 'imagenet',
                               input_tensor = None      ,
                               input_shape  = None      ,
                               pooling      = None      ,
                               classes      = 1000      )

keras.applications.resnet50.ResNet50(include_top  = True      ,
                                     weights      = 'imagenet',
                                     input_tensor = None      ,
                                     input_shape  = None      ,
                                     pooling      = None      ,
                                     classes      = 1000      )

keras.applications.inception_v3.InceptionV3(include_top  = True      ,
                                            weights      = 'imagenet',
                                            input_tensor = None      ,
                                            input_shape  = None      ,
                                            pooling      = None      ,
                                            classes      = 1000      )

keras.applications.inception_resnet_v2.InceptionResNetV2(include_top  = True      ,
                                                         weights      = 'imagenet',
                                                         input_tensor = None      ,
                                                         input_shape  = None      ,
                                                         pooling      = None      ,
                                                         classes      = 1000      )

keras.applications.mobilenet.MobileNet(input_shape      = None,
                                       alpha            = 1.0,
                                       depth_multiplier = 1,
                                       dropout          = 1e-3,
                                       include_top      = True,
                                       weights          = 'imagenet',
                                       input_tensor     = None,
                                       pooling          = None,
                                       classes          = 1000)

keras.applications.densenet.DenseNet121(include_top = True      ,
                                       weights      = 'imagenet',
                                       input_tensor = None      ,
                                       input_shape  = None      ,
                                       pooling      = None      ,
                                       classes      = 1000      )

keras.applications.densenet.DenseNet169(include_top  = True      ,
                                        weights      = 'imagenet',
                                        input_tensor = None      ,
                                        input_shape  = None      ,
                                        pooling      = None      ,
                                        classes      = 1000      )

keras.applications.densenet.DenseNet201(include_top  = True      ,
                                        weights      = 'imagenet',
                                        input_tensor = None      ,
                                        input_shape  = None      ,
                                        pooling      = None      ,
                                        classes      = 1000      )

keras.applications.nasnet.NASNetLarge(input_shape  = None      ,
                                      include_top  = True      ,
                                      weights      = 'imagenet',
                                      input_tensor = None      ,
                                      pooling      = None      ,
                                      classes      = 1000      )

keras.applications.nasnet.NASNetMobile(input_shape  = None      ,
                                       include_top  = True      ,
                                       weights      = 'imagenet',
                                       input_tensor = None      ,
                                       pooling      = None      ,
                                       classes      = 1000      )

keras.applications.mobilenet_v2.MobileNetV2(input_shape      = None      ,
                                            alpha            = 1.0       ,
                                            depth_multiplier = 1         ,
                                            include_top      = True      ,
                                            weights          = 'imagenet',
                                            input_tensor     = None      ,
                                            pooling          = None      ,
                                            classes          = 1000      )

Reference: keras.io

No comments:

Post a Comment