####
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
####
fashion_mnist = keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
####
imdb = keras.datasets.imdb
(train_data, train_labels),
(test_data , test_labels ) = imdb.load_data(num_words=10000)
####
dataset_path = keras.utils.get_file(
"auto-mpg.data",
"https://archive.ics.uci.edu/ml/" +
"machine-learning-databases/auto-mpg/auto-mpg.data")
column_names = ['MPG' , 'Cylinders' , 'Displacement', 'Horsepower',
'Weight', 'Acceleration', 'Model Year' , 'Origin' ]
raw_dataset = pd.read_csv(dataset_path , names = column_names,
na_values = "?", comment = '\t' ,
sep = " ", skipinitialspace = True )
####
from keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
####
from keras.datasets import cifar100
(x_train, y_train), (x_test, y_test) = cifar100.load_data(label_mode='fine')
####
from keras.datasets import reuters
(x_train, y_train), (x_test, y_test) = reuters.load_data(
path = "reuters.npz",
num_words = None ,
skip_top = 0 ,
maxlen = None ,
test_split = 0.2 ,
seed = 113 ,
start_char = 1 ,
oov_char = 2 ,
index_from = 3 )
####
from keras.datasets import boston_housing
(x_train, y_train), (x_test, y_test) = boston_housing.load_data()
Reference: keras.io
Wednesday, 16 January 2019
TensorFlow Keras Input
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment