Wednesday, 16 January 2019

TensorFlow Keras Layers


####
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
model.add(Conv2D(64                       ,
                 (3, 3)                   ,
                 input_shape = (3, 32, 32),
                 padding     = 'same',    ))

model.add(LSTM(32))

####
keras.engine.input_layer.Input()

keras.layers.Dense(units                                  ,
                   activation           = None            ,
                   use_bias             = True            ,
                   kernel_initializer   = 'glorot_uniform',
                   bias_initializer     = 'zeros'         ,
                   kernel_regularizer   = None            ,
                   bias_regularizer     = None            ,
                   activity_regularizer = None            ,
                   kernel_constraint    = None            ,
                   bias_constraint      = None            )

keras.layers.Activation(activation)
keras.layers.Dropout(rate, noise_shape=None, seed=None)
keras.layers.Flatten(data_format=None)
keras.layers.Reshape(target_shape)
keras.layers.Permute(dims)
keras.layers.RepeatVector(n)
keras.layers.Lambda(function, output_shape=None, mask=None, arguments=None)
keras.layers.ActivityRegularization(l1=0.0, l2=0.0)
keras.layers.Masking(mask_value=0.0)

keras.layers.SpatialDropout1D(rate)
keras.layers.SpatialDropout2D(rate, data_format=None)
keras.layers.SpatialDropout3D(rate, data_format=None)

keras.layers.Conv1D(filters                                ,
                    kernel_size                            ,
                    strides              = 1               ,
                    padding              = 'valid'         ,
                    data_format          = 'channels_last' ,
                    dilation_rate        = 1               ,
                    activation           = None            ,
                    use_bias             = True            ,
                    kernel_initializer   = 'glorot_uniform',
                    bias_initializer     = 'zeros'         ,
                    kernel_regularizer   = None            ,
                    bias_regularizer     = None            ,
                    activity_regularizer = None            ,
                    kernel_constraint    = None            ,
                    bias_constraint      = None            )

keras.layers.Conv2D(filters                                ,
                    kernel_size                            ,
                    strides              = (1, 1)          ,
                    padding              = 'valid'         ,
                    data_format          = None            ,
                    dilation_rate        = (1, 1)          ,
                    activation           = None            ,
                    use_bias             = True            ,
                    kernel_initializer   = 'glorot_uniform',
                    bias_initializer     = 'zeros'         ,
                    kernel_regularizer   = None            ,
                    bias_regularizer     = None            ,
                    activity_regularizer = None            ,
                    kernel_constraint    = None            ,
                    bias_constraint      = None            )

keras.layers.SeparableConv1D(filters,
                             kernel_size                             ,
                             strides               = 1               ,
                             padding               = 'valid'         ,
                             data_format           = 'channels_last' ,
                             dilation_rate         = 1               ,
                             depth_multiplier      = 1               ,
                             activation            = None            ,
                             use_bias              = True            ,
                             depthwise_initializer = 'glorot_uniform',
                             pointwise_initializer = 'glorot_uniform',
                             bias_initializer      = 'zeros'         ,
                             depthwise_regularizer = None            ,
                             pointwise_regularizer = None            ,
                             bias_regularizer      = None            ,
                             activity_regularizer  = None            ,
                             depthwise_constraint  = None            ,
                             pointwise_constraint  = None            ,
                             bias_constraint       = None            )

keras.layers.SeparableConv2D(filters,
                             kernel_size                             ,
                             strides               = (1, 1)          ,
                             padding               = 'valid'         ,
                             data_format           = None            ,
                             dilation_rate         = (1, 1)          ,
                             depth_multiplier      = 1               ,
                             activation            = None            ,
                             use_bias              = True            ,
                             depthwise_initializer = 'glorot_uniform',
                             pointwise_initializer = 'glorot_uniform',
                             bias_initializer      = 'zeros'         ,
                             depthwise_regularizer = None            ,
                             pointwise_regularizer = None            ,
                             bias_regularizer      = None            ,
                             activity_regularizer  = None            ,
                             depthwise_constraint  = None            ,
                             pointwise_constraint  = None            ,
                             bias_constraint       = None            )

keras.layers.DepthwiseConv2D(kernel_size                             ,
                             strides               = (1, 1)          ,
                             padding               = 'valid'         ,
                             depth_multiplier      = 1               ,
                             data_format           = None            ,
                             activation            = None            ,
                             use_bias              = True            ,
                             depthwise_initializer = 'glorot_uniform',
                             bias_initializer      = 'zeros'         ,
                             depthwise_regularizer = None            ,
                             bias_regularizer      = None            ,
                             activity_regularizer  = None            ,
                             depthwise_constraint  = None            ,
                             bias_constraint       = None            )

keras.layers.Conv2DTranspose(filters                                ,
                             kernel_size                            ,
                             strides              = (1, 1)          ,
                             padding              = 'valid'         ,
                             output_padding       = None            ,
                             data_format          = None            ,
                             dilation_rate        = (1, 1)          ,
                             activation           = None            ,
                             use_bias             = True            ,
                             kernel_initializer   = 'glorot_uniform',
                             bias_initializer     = 'zeros'         ,
                             kernel_regularizer   = None            ,
                             bias_regularizer     = None            ,
                             activity_regularizer = None            ,
                             kernel_constraint    = None            ,
                             bias_constraint      = None            )

keras.layers.Conv3D(filters,
                    kernel_size                            ,
                    strides              = (1, 1, 1)       ,
                    padding              = 'valid'         ,
                    data_format          = None            ,
                    dilation_rate        = (1, 1, 1)       ,
                    activation           = None            ,
                    use_bias             = True            ,
                    kernel_initializer   = 'glorot_uniform',
                    bias_initializer     = 'zeros'         ,
                    kernel_regularizer   = None            ,
                    bias_regularizer     = None            ,
                    activity_regularizer = None            ,
                    kernel_constraint    = None            ,
                    bias_constraint      = None            )

keras.layers.Conv3DTranspose(filters,
                             kernel_size                            ,
                             strides              = (1, 1, 1)       ,
                             padding              = 'valid'         ,
                             output_padding       = None            ,
                             data_format          = None            ,
                             activation           = None            ,
                             use_bias             = True            ,
                             kernel_initializer   = 'glorot_uniform',
                             bias_initializer     = 'zeros'         ,
                             kernel_regularizer   = None            ,
                             bias_regularizer     = None            ,
                             activity_regularizer = None            ,
                             kernel_constraint    = None            ,
                             bias_constraint      = None            )

keras.layers.Cropping1D(cropping=(1, 1)                                    )
keras.layers.Cropping2D(cropping=((0, 0), (0, 0)        ), data_format=None)
keras.layers.Cropping3D(cropping=((1, 1), (1, 1), (1, 1)), data_format=None)

keras.layers.UpSampling1D(size=2)

keras.layers.UpSampling2D(size          = (2, 2)   ,
                          data_format   = None     ,
                          interpolation = 'nearest')

keras.layers.UpSampling3D(size=(2, 2, 2), data_format=None)
keras.layers.ZeroPadding1D(padding=1)
keras.layers.ZeroPadding2D(padding=(1, 1), data_format=None)
keras.layers.ZeroPadding3D(padding=(1, 1, 1), data_format=None)

keras.layers.MaxPooling1D(pool_size   = 2              ,
                          strides     = None           ,
                          padding     = 'valid'        ,
                          data_format = 'channels_last')

keras.layers.MaxPooling2D(pool_size   = (2, 2) ,
                          strides     = None   ,
                          padding     = 'valid',
                          data_format = None   )

keras.layers.MaxPooling3D(pool_size   = (2, 2, 2),
                          strides     = None     ,
                          padding     = 'valid'  ,
                          data_format = None     )

keras.layers.AveragePooling1D(pool_size   = 2              ,
                              strides     = None           ,
                              padding     = 'valid'        ,
                              data_format = 'channels_last')

keras.layers.AveragePooling2D(pool_size   = (2, 2) ,
                              strides     = None   ,
                              padding     = 'valid',
                              data_format = None   )

keras.layers.AveragePooling3D(pool_size   = (2, 2, 2),
                              strides     = None     ,
                              padding     = 'valid'  ,
                              data_format = None     )

keras.layers.GlobalMaxPooling1D    (data_format = 'channels_last')
keras.layers.GlobalAveragePooling1D(data_format = 'channels_last')
keras.layers.GlobalMaxPooling2D    (data_format = None           )
keras.layers.GlobalAveragePooling2D(data_format = None           )
keras.layers.GlobalMaxPooling3D    (data_format = None           )
keras.layers.GlobalAveragePooling3D(data_format = None           )

keras.layers.LocallyConnected1D(filters                                ,
                                kernel_size                            ,
                                strides              = 1               ,
                                padding              = 'valid'         ,
                                data_format          = None            ,
                                activation           = None            ,
                                use_bias             = True            ,
                                kernel_initializer   = 'glorot_uniform',
                                bias_initializer     = 'zeros'         ,
                                kernel_regularizer   = None            ,
                                bias_regularizer     = None            ,
                                activity_regularizer = None            ,
                                kernel_constraint    = None            ,
                                bias_constraint      = None            )

keras.layers.LocallyConnected2D(filters                                ,
                                kernel_size                            ,
                                strides              = (1, 1)          ,
                                padding              = 'valid'         ,
                                data_format          = None            ,
                                activation           = None            ,
                                use_bias             = True            ,
                                kernel_initializer   = 'glorot_uniform',
                                bias_initializer     = 'zeros'         ,
                                kernel_regularizer   = None            ,
                                bias_regularizer     = None            ,
                                activity_regularizer = None            ,
                                kernel_constraint    = None            ,
                                bias_constraint      = None            )

keras.layers.RNN(cell                    ,
                 return_sequences = False,
                 return_state     = False,
                 go_backwards     = False,
                 stateful         = False,
                 unroll           = False)

keras.layers.SimpleRNN(units                                   ,
                       activation            = 'tanh'          ,
                       use_bias              = True            ,
                       kernel_initializer    = 'glorot_uniform',
                       recurrent_initializer = 'orthogonal'    ,
                       bias_initializer      = 'zeros'         ,
                       kernel_regularizer    = None            ,
                       recurrent_regularizer = None            ,
                       bias_regularizer      = None            ,
                       activity_regularizer  = None            ,
                       kernel_constraint     = None            ,
                       recurrent_constraint  = None            ,
                       bias_constraint       = None            ,
                       dropout               = 0.0             ,
                       recurrent_dropout     = 0.0             ,
                       return_sequences      = False           ,
                       return_state          = False           ,
                       go_backwards          = False           ,
                       stateful              = False           ,
                       unroll                = False           )

keras.layers.GRU(units                                   ,
                 activation            = 'tanh'          ,
                 recurrent_activation  = 'hard_sigmoid'  ,
                 use_bias              = True            ,
                 kernel_initializer    = 'glorot_uniform',
                 recurrent_initializer = 'orthogonal'    ,
                 bias_initializer      = 'zeros'         ,
                 kernel_regularizer    = None            ,
                 recurrent_regularizer = None            ,
                 bias_regularizer      = None            ,
                 activity_regularizer  = None            ,
                 kernel_constraint     = None            ,
                 recurrent_constraint  = None            ,
                 bias_constraint       = None            ,
                 dropout               = 0.0             ,            
                 recurrent_dropout     = 0.0             ,
                 implementation        = 1               ,
                 return_sequences      = False           ,
                 return_state          = False           ,
                 go_backwards          = False           ,
                 stateful              = False           ,
                 unroll                = False           ,
                 reset_after           = False           )

keras.layers.LSTM(units                                   ,
                  activation            = 'tanh'          ,
                  recurrent_activation  = 'hard_sigmoid'  ,
                  use_bias              = True            ,
                  kernel_initializer    = 'glorot_uniform',
                  recurrent_initializer = 'orthogonal'    ,
                  bias_initializer      = 'zeros'         ,
                  unit_forget_bias      = True            ,
                  kernel_regularizer    = None            ,
                  recurrent_regularizer = None            ,
                  bias_regularizer      = None            ,
                  activity_regularizer  = None            ,
                  kernel_constraint     = None            ,
                  recurrent_constraint  = None            ,
                  bias_constraint       = None            ,
                  dropout               = 0.0             ,
                  recurrent_dropout     = 0.0             ,
                  implementation        = 1               ,
                  return_sequences      = False           ,
                  return_state          = False           ,
                  go_backwards          = False           ,
                  stateful              = False           ,
                  unroll                = False           )

keras.layers.ConvLSTM2D(filters                                 ,
                        kernel_size                             ,
                        strides               = (1, 1)          ,
                        padding               = 'valid'         ,
                        data_format           = None            ,
                        dilation_rate         = (1, 1)          ,
                        activation            = 'tanh'          ,
                        recurrent_activation  = 'hard_sigmoid'  ,
                        use_bias              = True            ,
                        kernel_initializer    = 'glorot_uniform',
                        recurrent_initializer = 'orthogonal'    ,
                        bias_initializer      = 'zeros'         ,
                        unit_forget_bias      = True            ,
                        kernel_regularizer    = None            ,
                        recurrent_regularizer = None            ,
                        bias_regularizer      = None            ,
                        activity_regularizer  = None            ,
                        kernel_constraint     = None            ,
                        recurrent_constraint  = None            ,
                        bias_constraint       = None            ,
                        return_sequences      = False           ,
                        go_backwards          = False           ,
                        stateful              = False           ,
                        dropout               = 0.0             ,
                        recurrent_dropout     = 0.0             )

keras.layers.SimpleRNNCell(units                                   ,
                           activation            = 'tanh'          ,
                           use_bias              = True            ,
                           kernel_initializer    = 'glorot_uniform',
                           recurrent_initializer = 'orthogonal'    ,
                           bias_initializer      = 'zeros'         ,
                           kernel_regularizer    = None            ,
                           recurrent_regularizer = None            ,
                           bias_regularizer      = None            ,
                           kernel_constraint     = None            ,
                           recurrent_constraint  = None            ,
                           bias_constraint       = None            ,
                           dropout               = 0.0             ,
                           recurrent_dropout     = 0.0             )

keras.layers.GRUCell(units                                   ,
                     activation            = 'tanh'          ,
                     recurrent_activation  = 'hard_sigmoid'  ,
                     use_bias              = True            ,
                     kernel_initializer    = 'glorot_uniform',
                     recurrent_initializer = 'orthogonal'    ,
                     bias_initializer      = 'zeros'         ,
                     kernel_regularizer    = None            ,
                     recurrent_regularizer = None            ,
                     bias_regularizer      = None            ,
                     kernel_constraint     = None            ,
                     recurrent_constraint  = None            ,
                     bias_constraint       = None            ,
                     dropout               = 0.0             ,
                     recurrent_dropout     = 0.0             ,
                     implementation        = 1               ,
                     reset_after           = False           )

keras.layers.LSTMCell(units                                   ,
                      activation            = 'tanh'          ,
                      recurrent_activation  = 'hard_sigmoid'  ,
                      use_bias              = True            ,
                      kernel_initializer    = 'glorot_uniform',
                      recurrent_initializer = 'orthogonal'    ,
                      bias_initializer      = 'zeros'         ,
                      unit_forget_bias      = True            ,
                      kernel_regularizer    = None            ,
                      recurrent_regularizer = None            ,
                      bias_regularizer      = None            ,
                      kernel_constraint     = None            ,
                      recurrent_constraint  = None            ,
                      bias_constraint       = None            ,
                      dropout               = 0.0             ,
                      recurrent_dropout     = 0.0             ,
                      implementation        = 1               )

keras.layers.CuDNNGRU(units                                   ,
                      kernel_initializer    = 'glorot_uniform',
                      recurrent_initializer = 'orthogonal'    ,
                      bias_initializer      = 'zeros'         ,
                      kernel_regularizer    = None            ,
                      recurrent_regularizer = None            ,
                      bias_regularizer      = None            ,
                      activity_regularizer  = None            ,
                      kernel_constraint     = None            ,
                      recurrent_constraint  = None            ,
                      bias_constraint       = None            ,
                      return_sequences      = False           ,
                      return_state          = False           ,
                      stateful              = False           )

keras.layers.CuDNNLSTM(units                                   ,
                       kernel_initializer    = 'glorot_uniform',
                       recurrent_initializer = 'orthogonal'    ,
                       bias_initializer      = 'zeros'         ,
                       unit_forget_bias      = True            ,
                       kernel_regularizer    = None            ,
                       recurrent_regularizer = None            ,
                       bias_regularizer      = None            ,
                       activity_regularizer  = None            ,
                       kernel_constraint     = None            ,
                       recurrent_constraint  = None            ,
                       bias_constraint       = None            ,
                       return_sequences      = False           ,
                       return_state          = False           ,
                       stateful              = False           )

keras.layers.Embedding(input_dim                         ,
                       output_dim                        ,
                       embeddings_initializer = 'uniform',
                       embeddings_regularizer = None     ,
                       activity_regularizer   = None     ,
                       embeddings_constraint  = None     ,
                       mask_zero              = False    ,
                       input_length           = None     )

keras.layers.LeakyReLU(alpha=0.3)

keras.layers.PReLU(alpha_initializer = 'zeros',
                   alpha_regularizer = None   ,
                   alpha_constraint  = None   ,
                   shared_axes       = None   )

keras.layers.ELU            (alpha     = 1.0 )
keras.layers.ThresholdedReLU(theta     = 1.0 )
keras.layers.Softmax        (axis      = -1  )
keras.layers.ReLU           (max_value = None,negative_slope=0.0,threshold=0.0)

keras.layers.BatchNormalization(axis                        = -1     ,
                                momentum                    = 0.99   ,
                                epsilon                     = 0.001  ,
                                center                      = True   ,
                                scale                       = True   ,
                                beta_initializer            = 'zeros',
                                gamma_initializer           = 'ones' ,
                                moving_mean_initializer     = 'zeros',
                                moving_variance_initializer = 'ones' ,
                                beta_regularizer            = None   ,
                                gamma_regularizer           = None   ,
                                beta_constraint             = None   ,
                                gamma_constraint            = None   )

keras.layers.GaussianNoise  (stddev)
keras.layers.GaussianDropout(rate  )
keras.layers.AlphaDropout   (rate  , noise_shape=None, seed=None)
keras.layers.TimeDistributed(layer )

####
keras.layers.Add     ()
keras.layers.Subtract()
keras.layers.Multiply()
keras.layers.Average ()
keras.layers.Maximum ()

keras.layers.Concatenate(axis = -1)
keras.layers.Dot        (axes     , normalize=False)

####
keras.layers.add        (inputs)
keras.layers.subtract   (inputs)
keras.layers.multiply   (inputs)
keras.layers.average    (inputs)
keras.layers.maximum    (inputs)
keras.layers.concatenate(inputs, axis = -1)
keras.layers.dot        (inputs, axes     , normalize = False)
####
layer.get_weights()
layer.set_weights(weights)
layer.get_config()
layer.input
layer.output
layer.input_shape
layer.output_shape
layer.get_input_at       (node_index)
layer.get_output_at      (node_index)
layer.get_input_shape_at (node_index)
layer.get_output_shape_at(node_index)

Reference: keras.io

No comments:

Post a Comment